Question : If $x+\frac{1}{x}=3$, then the value of $x^5+\frac{1}{x^5}$ is:
Option 1: 322
Option 2: 126
Option 3: 123
Option 4: 113
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 123
Solution : Given: $x+\frac{1}{x}=3$ $x^2+\frac{1}{x^2}=(x+\frac{1}{x})^2-2=3^2-2=7$. Similarly, $x^3+\frac{1}{x^3}=(x+\frac{1}{x})^3-3×x×\frac{1}{x}(x+\frac{1}{x})=3^3-3\times 3=18$. Now, $x^5+\frac{1}{x^5}=(x^2+\frac{1}{x^2})(x^3+\frac{1}{x^3})-(x+\frac{1}{x})$ Putting the values of $x^2+\frac{1}{x^2}$ and $x^3+\frac{1}{x^3}$, we get: $\therefore x^5+\frac{1}{x^5}=7\times 18-3=123$ Hence, the correct answer is 123.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $ x+\frac{1}{x}=3,$ then the value of $x^{5}+\frac{1}{x^{5}}$ is:
Question : If $x=\sqrt3+\frac{1}{\sqrt3}$, then the value of $(x-\frac{\sqrt{126}}{\sqrt{42}})(x-\frac{1}{x-\frac{2\sqrt3}{3}})$ is:
Question : If $x+\frac{1}{x}=3$, then the value of $\frac{3x^{2}-4x+3}{x^{2}-x+1}$ is:
Question : If $x+\frac{1}{x}=0$, then the value of $x^{5}+\frac{1}{x^{5}}$ is:
Question : If $x+\frac{1}{x}=2$, then find the value of $x^5+\frac{1}{x^5}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile