Question : If $\cos \theta=\frac{12}{13}$, then the value of $\frac{\sin \theta(1-\tan \theta)}{\tan \theta(1+\operatorname{cosec} \theta)}$ is:
Option 1: $\frac{25}{78}$
Option 2: $\frac{35}{234}$
Option 3: $\frac{35}{108}$
Option 4: $\frac{25}{156}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{35}{234}$
Solution : Given: $\cos \theta=\frac{12}{13}$ We know that, $\cos \theta=\frac{\text{Base}}{\text{Hypotenuse}}=\frac{12}{13}$ Using Pythagoras theorem, we get, Perpendicular = $\sqrt{13^2-12^2}=5$ $\sin \theta=\frac{\text{Perpendicular}}{\text{Hypotenuse}}=\frac{5}{13}$ $\tan \theta=\frac{\text{Perpendicular}}{\text{Base}}=\frac{5}{12}$ $\operatorname{cosec} \theta=\frac{1}{\sin \theta}=\frac{13}{5}$ Now, $\frac{\sin \theta(1-\tan \theta)}{\tan \theta(1+\operatorname{cosec} \theta)}$ $= \frac{\frac{5}{13}(1-\frac{5}{12})}{\frac{5}{12}(1+\frac{13}{5})}$ $= \frac{\frac{5}{13}\times \frac{7}{12}}{\frac{5}{12}\times \frac{18}{5}}$ $=\frac{35}{234}$ Hence, the correct answer is $\frac{35}{234}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : Which of the following is equal to $[\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}]$?
Question : The value of $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$ is:
Question : $\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta(1+\cos \theta)} \times \frac{\sqrt{\sec ^2 \theta+\operatorname{cosec}^2 \theta}}{\tan \theta+\cot \theta}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile