Question : If $27 x^3-64 y^3=(A x+B y)\left(C x^2-D y^2+12 x y\right)$, then the value of $4 A+B+3 C+2 D$ is:
Option 1: 5
Option 2: 3
Option 3: –3
Option 4: –4
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 3
Solution : Given: $27x^3 - 64y^3 = (Ax + By) (Cx^2 - Dy^2 + 12 xy)$ ⇒ $(3x)^3 - (4y)^3=(Ax + By) (Cx^2 - Dy^2 + 12 xy)$ ⇒ $(3x - 4y) (9x^2 + 16y^2 + 12 xy)=(Ax + By) (Cx^2 - Dy^2 + 12 xy)$ $\therefore$ A = 3, B = –4, C = 9, D = –16 Now, 4A + B + 3C + 2D = 4 × 3 – 4 + 3 × 9 + 2 × (–16) = 12 – 4 + 27 – 32 = 3 Hence, the correct answer is 3.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(x+y)^3+8(x-y)^3=(3 x+A y)\left(3 x^2+B x y+C y^2\right)$, then the value of (A + B + C) is:
Question : What is the value of $\left(27 x^3-58 x^2 y+31 x y^2-8 y^3\right)$, when $x=-5$ and $y=-7?$
Question : If $x^{2} -3x +1=0$, then the value of $\frac{\left(x^4+\frac{1}{x^2}\right)}{\left(x^2+5 x+1\right)}$ is:
Question : If $x+y+z=0$ and $x^2+y^2+z^2=40$, then what is the value of $x y+y z+z x?$
Question : The factors of $x^2+4 y^2+4 y-4 x y-2 x-8$ are:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile