Question : If $x^2+8 y^2-12 y-4 x y+9=0$, then the value of $(7x-8y)$ is:
Option 1: 21
Option 2: 5
Option 3: 12
Option 4: 9
Correct Answer: 9
Solution : According to the question, ⇒ $x^2+8 y^2-12 y-4 x y+9=0$ ⇒ $x^2 - 4xy + 4y^2 + 4y^2 - 12y + 9 = 0$ ⇒ $(x - 2y)^2 + (2y - 3)^2 = 0$ ⇒ $x - 2y = 0, 2y - 3 = 0$ ⇒ $x = 2y, 2y = 3$ ⇒ $x = 3, y = \frac{3}{2}$ Now, $7x - 8y$ = 7 × (3) – 8 × $\frac{(3)}{2}$ = 21 – 12 = 9 Hence, the correct answer is 9.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^2+8 y^2+12 y-4 x y+9=0$, then the value of $(7 x+8 y)$ is:
Question : If $x^4+x^2 y^2+y^4=21$ and $x^2+xy+y^2=3$, then what is the value of $4xy $?
Question : If $\frac{x}{4 y}=\frac{3}{4}$ then, the value of $\frac{2 x+3 y}{x–2 y}$ is:
Question : If $x^4+y^4=x^2 y^2$, then the value of $x^6+y^6$ is:
Question : If $x^4+x^2 y^2+y^4=133$ and $x^2-x y+y^2=7$, then what is the value of $xy$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile