Question : If $x^2+8 y^2+12 y-4 x y+9=0$, then the value of $(7 x+8 y)$ is:
Option 1: –33
Option 2: 9
Option 3: 33
Option 4: –9
Correct Answer: 9
Solution : Given: $x^2+ 8y^2- 12y - 4xy + 9 = 0$ ⇒ $x^2+ 4y^2+ 4y^2- 12y - 4xy + 9 = 0$ ⇒ $(x^2+ 4y^2- 4xy) + (4y^2- 12y + 9) = 0$ ⇒ $(x - 2y)^2+ (2y - 3)^2= 0$ If the sum of squares of two numbers is zero then each number will also be zero. ⇒ $(2y - 3)^2= 0$ and $(x - 2y)^2= 0$ ⇒ $(2y - 3) = 0$ ⇒ $2y = 3$ ⇒ $y = \frac{3}{2}$ and $(x - 2y)^2= 0$ ⇒ $(x - 2y) = 0$ ⇒ $x = 2× \frac{3}{2}$ ⇒ $x = 3$ $\therefore (7x - 8y) = 7 × 3 - 8 × \frac{3}{2}= 21 - 12=9$ Hence, the correct answer is 9.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{x}{4 y}=\frac{3}{4}$ then, the value of $\frac{2 x+3 y}{x–2 y}$ is:
Question : If $x^2+8 y^2-12 y-4 x y+9=0$, then the value of $(7x-8y)$ is:
Question : If $x^4+x^2 y^2+y^4=21$ and $x^2+xy+y^2=3$, then what is the value of $4xy $?
Question : If $x^4+x^2 y^2+y^4=133$ and $x^2-x y+y^2=7$, then what is the value of $xy$?
Question : If $x+y+z=13,x^2+y^2+z^2=133$ and $x^3+y^3+z^3=847$, then the value of $\sqrt[3]{x y z}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile