Question : If $4-2 \sin ^2 \theta-5 \cos \theta=0,0^{\circ}<\theta<90^{\circ}$, then the value of $\cos \theta+\tan \theta$ is:
Option 1: $\frac{2-\sqrt{3}}{2}$
Option 2: $\frac{1+2 \sqrt{3}}{2}$
Option 3: $\frac{2+\sqrt{3}}{2}$
Option 4: $\frac{1-2 \sqrt{3}}{2}$
Correct Answer: $\frac{1+2 \sqrt{3}}{2}$
Solution : Given: $4-2 \sin ^2 \theta-5 \cos \theta=0$ ⇒ $4-2(1- \cos ^2 \theta)-5 \cos \theta=0$ ⇒ $4-2+ 2\cos ^2 \theta-5 \cos \theta=0$ ⇒ $2\cos ^2 \theta-5 \cos \theta+2=0$ ⇒ $2\cos ^2 \theta-4 \cos \theta- \cos \theta+2=0$ ⇒ $2\cos \theta(\cos \theta-2) - 1(\cos \theta-2) = 0$ ⇒ $(2\cos \theta-1)(\cos \theta-2) = 0$ ⇒ $\cos \theta = \frac{1}{2}$ and $\cos \theta = 2$ Rejecting $\cos \theta = 2$ as $0^{\circ}<\theta<90^{\circ}$ ⇒ $\cos \theta = \frac{1}{2}$ ⇒ $\theta = 60^{\circ}$ So, $\cos \theta + \tan \theta$ $= \cos 60^{\circ} + \tan 60^{\circ}$ $ = \frac{1}{2} + \sqrt3$ $= \frac{1+2\sqrt3}{2}$ Hence, the correct answer is $\frac{1+2\sqrt3}{2}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $4-2 \sin ^2 \theta-5 \cos \theta=0,0^{\circ}<\theta<90^{\circ}$, then the value of $\cos \theta-\tan \theta$ is:
Question : If $(\cos \theta+\sin \theta):(\cos \theta-\sin \theta)=(\sqrt{3}+1):(\sqrt{3}-1), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $\sec \theta$?
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Question : If $3+\cos ^2 \theta=3\left(\cot ^2 \theta+\sin ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\cos \theta+2 \sin \theta)$ ?
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile