Question : If $4\left(\operatorname{cosec}^2 57^\circ-\tan ^2 33^\circ\right)-\cos 90^\circ+y \tan ^2 66^\circ \tan ^2 24^\circ=\frac{y}{2}$, then the value of $y$ is:
Option 1: 4
Option 2: – 4
Option 3: 8
Option 4: – 8
Correct Answer: – 8
Solution : $4\left(\operatorname{cosec}^2 57^\circ-\tan ^2 33^\circ\right)-\cos 90^\circ+y \tan ^2 66^\circ \tan ^2 24^\circ=\frac{y}{2}$ Using, $\cos 90^\circ = 0$, $ \operatorname {cosec}^2 A - 1 = \cot^2 A$ and $\tan (90^\circ - A) = \cot A$ where $A$ is an angle. Substituting these identities into the given equation, $⇒4\left[1 + \cot^2 57^\circ - (\tan^2 (90^\circ-57^\circ))\right] + y \tan^2 66^\circ \tan^2 (90^\circ - 66^\circ) = \frac{y}{2}$ We know that $\cot A = \tan (90^\circ - A)$ $⇒4\left[1 +\cot^2 57^\circ - \cot^2 57^\circ\right] + y \tan^2 66^\circ \cot^2 66^\circ = \frac{y}{2}$ $⇒4\left[1\right] + y = \frac{y}{2}$ $⇒\frac{y}{2}=-4$ $⇒y = -8$ Hence, the correct answer is '– 8'.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $4\left(\operatorname{cosec}^2 57^{\circ}-\tan ^2 33^{\circ}\right)-\cos 90^{\circ}-y \tan ^2 66^{\circ} \tan ^2 24^{\circ}=\frac{y}{2}$, the value of $y$ is:
Question : Find the value of $\frac{\sin ^2 39^{\circ}+\sin ^2\left(90^{\circ}–39^{\circ}\right)}{\cos ^2 35^{\circ}+\cos ^2\left(90^{\circ}–35^{\circ}\right)}+3 \tan 25^{\circ} \tan 75^{\circ}$:
Question : The value of $\tan ^2 48^{\circ}-\operatorname{cosec}^2 42^{\circ}+\operatorname{cosec}\left(67^{\circ}+\theta\right)-\sec \left(23^{\circ}-\theta\right)$ is:
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : If $7 \sin ^2 \theta+3 \cos ^2 \theta=4,0^{\circ}<\theta<90^{\circ}$, then the value of $(\tan ^2 2 \theta+\operatorname{cosec}^2 2 \theta)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile