Question : If $a+b+c=0$, then the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{a b}$ is:
Option 1: 1
Option 2: 3
Option 3: - 1
Option 4: 0
Correct Answer: 3
Solution : $a+b+c=0$ $a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)$ ⇒ $a^3+b^3+c^3 - 3abc = 0$ ⇒ $a^3+b^3+c^3 = 3abc$ ⇒ $\frac{a^3+b^3+c^3}{abc} = 3$ ⇒ $\frac{a^2}{bc} + \frac{b^2}{ac} + \frac{c^2}{ab} = 3$ Hence, the correct answer is 3.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $a, b, c$ are all non-zero and $a+b+c=0$, then find the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{ab}$.
Question : If $(a^2 = b + c)$, $(b^2 = a + c)$, $(c^2 = b + a)$. Then, what will be the value of $(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1})$?
Question : If $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}(a\neq b\neq c)$, then the value of $abc$ is:
Question : If $a+b+c=0$, then the value of $\frac{a^{2}+b^{2}+c^{2}}{ab+bc+ca}$ is:
Question : If $a+b+c=m$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$, then the average of $a^{2}, b^{2},$ and $c^{2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile