17 Views
Question : If $\sin (x+y) = \cos (x–y)$, then the value of $\cos^2 x$ is:
Option 1: $\frac{1}{2}$
Option 2: $3$
Option 3: $5$
Option 4: $\frac{1}{4}$
Answer (1)
Correct Answer: $\frac{1}{2}$
Solution :
Given: $\sin (x+y) = \cos (x–y)$
If $\theta_1+\theta_2=90^{\circ}$, then If $\sin \theta _1=\cos \theta_2$.
$\sin (x+y) = \cos (x–y)$
⇒ $x+y+x–y=90^{\circ}$
⇒ $2x=90^{\circ}$
⇒ $x=45^{\circ}$
The value of $\cos^2 x=\cos^245^{\circ}$
= $(\frac{1}{\sqrt2})^2$
= $\frac{1}{2}$
Hence, the correct answer is $\frac{1}{2}$.
SSC CGL Complete Guide
Candidates can download this ebook to know all about SSC CGL.
Download EBookKnow More About
Related Questions
TOEFL ® Registrations 2025
Apply
Accepted by 13,000 universities worldwide | Offered in 200+ countries | 40 million people have taken TOEFL Test
Upcoming Exams
Preliminary Exam
Exam Date:
25 May, 2025
- 25 May, 2025
Admit Card Date:
5 Jun, 2025
- 15 Jun, 2025
Application Date:
9 Jun, 2025
- 4 Jul, 2025