Question : If $7 \sin ^2 \theta+3 \cos ^2 \theta=4,0^{\circ}<\theta<90^{\circ}$, then the value of $(\tan ^2 2 \theta+\operatorname{cosec}^2 2 \theta)$ is:
Option 1: $7$
Option 2: $\frac{15}{4}$
Option 3: $\frac{13}{3}$
Option 4: $\frac{13}{4}$
Correct Answer: $\frac{13}{3}$
Solution : Given: The trigonometric expression is $7 \sin ^2 \theta+3 \cos ^2 \theta=4,0^{\circ}<\theta<90^{\circ}$. Use the trigonometric identity, $\sin ^2 \theta+\cos^2\theta=1$. $7 \sin ^2 \theta+3 \cos ^2 \theta=4$ ⇒ $4 \sin ^2 \theta+3 (\cos ^2 \theta+\sin^2\theta)=4$ ⇒ $4 \sin ^2 \theta+3=4$ ⇒ $4 \sin ^2 \theta=1$ ⇒ $\sin ^2 \theta=\frac{1}{4}$ ⇒ $\sin \theta=\frac{1}{2}$ ⇒ $\theta = 30^{\circ}$ The value of $(\tan ^2 2 \theta+\operatorname{cosec}^2 2 \theta)$ $=\tan ^2 60^{\circ}+\operatorname{cosec}^2 60^{\circ}$ $=3+\frac{4}{3}$ $=\frac{9+4}{3}=\frac{13}{3}$ Hence, the correct answer is $\frac{13}{3}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Question : If $4-2 \sin ^2 \theta-5 \cos \theta=0,0^{\circ}<\theta<90^{\circ}$, then the value of $\cos \theta+\tan \theta$ is:
Question : If $4-2 \sin ^2 \theta-5 \cos \theta=0,0^{\circ}<\theta<90^{\circ}$, then the value of $\cos \theta-\tan \theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile