Question : If $x\left(5-\frac{2}{x}\right)=\frac{5}{x}$, then the value of $x^2+\frac{1}{x^2}$ is:
Option 1: $\frac{54}{25}$
Option 2: $\frac{53}{28}$
Option 3: $\frac{53}{27}$
Option 4: $\frac{54}{23}$
Correct Answer: $\frac{54}{25}$
Solution : Given: $x\left(5-\frac{2}{x}\right)=\frac{5}{x}$ ⇒ $5x-2 = \frac{5}{x}$ ⇒ $5x-\frac{5}{x} =2$ ⇒ $5(x-\frac{1}{x})=2$ ⇒ $x- \frac{1}{x} = \frac{2}{5}$ Squaring both sides. ⇒ $x^2+\frac{1}{x^2}-2 = \frac{4}{25}$ ⇒ $x^2+\frac{1}{x^2} = \frac{4}{25}+2$ ⇒ $x^2+\frac{1}{x^2} = \frac{54}{25}$ Hence, the correct answer is $\frac{54}{25}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^2-5 x+1=0$, then the value of $\left(x^4+\frac{1}{x^2}\right) \div\left(x^2+1\right)$ is:
Question : If $\frac{x^{2}-x+1}{x^{2}+x+1}=\frac{2}{3}$, then the value of $\left (x+\frac{1}{x} \right)$ is:
Question : If $x^2-3 x+1=0$, then the value of $\left(x^4+\frac{1}{x^2}\right) \div\left(x^2+1\right)$ is:
Question : The next term of the sequence $\left (1+\frac{1}{2} \right):\left (1+\frac{1}{2} \right) \left (1+\frac{1}{3} \right): \left (1+\frac{1}{2} \right)\left (1+\frac{1}{3} \right)\left (1+\frac{1}{4} \right): .........$ is:
Question : The value of $\left(5 \div 2\right.$ of $\left.\frac{1}{2}\right)+\left(5 \frac{1}{4} \div \frac{3}{7}\right.$ of $\left.\frac{1}{2}\right) \div\left(5 \frac{1}{9}-7 \frac{7}{8} \div 9 \frac{9}{20}\right) \times \frac{11}{21}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile