Question : If $\frac{1}{a}–\frac{1}{b}=\frac{1}{a–b}$, then the value of $a^{3}+b^{3}$ is:
Option 1: 0
Option 2: –1
Option 3: 1
Option 4: 2
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : Given: $\frac{1}{a}–\frac{1}{b}=\frac{1}{a–b}$ ⇒ $\frac{b–a}{ab}=\frac{1}{a–b}$ ⇒ $(b–a)(a–b)=ab$ ⇒ $(a–b)^{2}=–ab$ ⇒ $a^{2}+b^{2}–2ab=–ab$ ⇒ $a^{2}+b^{2}=ab$ ⇒ $a^{2}+b^{2}-ab=0$ We know $a^3+b^3=(a+b)(a^2+b^2-ab)$ So, $a^3+b^3=0$ Hence, the correct answer is $0$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\frac{a}{b}+\frac{b}{a}=2$, then the value of $(a-b)$ is:
Question : If $A+\frac{1}{A}=-1$, then find the value of $\frac{{A}^6+{A}^3-1}{{~A}^9+{A}^3-1}$.
Question : If $x+\frac{1}{x}=0$, then the value of $x^{5}+\frac{1}{x^{5}}$ is:
Question : If $x^{\frac{1}{4}}+x^{\frac{-1}{4}}=2$, then what is the value of $x^{81}+\frac{1}{x^{81}}$?
Question : If $a+\frac{1}{a}=2$ and $b+\frac{1}{b}=-2$, then what is the value of $a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2} ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile