Question : If $x^4+y^4=x^2 y^2$, then the value of $x^6+y^6$ is:
Option 1: 2
Option 2: 0
Option 3: 1
Option 4: 3
Correct Answer: 0
Solution : Given: $x^4+y^4=x^2 y^2$ Now, $x^6+y^6$ = $(x^2)^3 + (y^2)^3$ = $(x^2+y^2)(x^4+y^4-x^2y^2)$ = $(x^2+y^2)(x^2y^2-x^2y^2)$ = $(x^2+y^2)(0)$ = 0 Hence, the correct answer is 0.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{x}{y}+\frac{y}{x}=1$ and $x+y=2$, then the value of $x^3+y^3$ is:
Question : If $x^4+x^2 y^2+y^4=133$ and $x^2-x y+y^2=7$, then what is the value of $xy$?
Question : If $\frac{x}{4 y}=\frac{3}{4}$ then, the value of $\frac{2 x+3 y}{x–2 y}$ is:
Question : If $\frac{1}{x+2}=\frac{3}{y+3}=\frac{1331}{z+1331}=\frac{1}{3}$, then what is the value of $\frac{x}{x+1}+\frac{y}{y+6}+\frac{z}{z+2662}$?
Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile