Question : If $\cos A=\frac{15}{17}, 0 \leq A \leq 90^{\circ}$, then the value of $\cot(90° - A)$ is:
Option 1: $\frac{8}{15}$
Option 2: $\frac{2 \sqrt{2}}{15}$
Option 3: $\frac{\sqrt{2}}{15}$
Option 4: $\frac{7}{15}$
Correct Answer: $\frac{8}{15}$
Solution : Given: $\cos A=\frac{15}{17}$ $\sec A=\frac{1}{\cos A}=\frac{17}{15}$ $\cot(90^\circ - A)=\tan A=\sqrt{\sec^2 A-1}$ $=\sqrt{(\frac{17}{15}^2)-1}$ $=\sqrt{\frac{289}{225}-1}$ $=\sqrt{\frac{289-225}{225}}$ $=\sqrt{\frac{64}{225}}$ $=\frac{8}{15}$ Hence, the correct answer is $\frac{8}{15}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\cos A=\frac{1}{2}, 0 \leq A \leq 90^{\circ}$, then what is the value of sin (180 - A)?
Question : If $\operatorname{cosec} A+\cot A=3$, $0 \leq A \leq 90^{\circ}$, then find the value of cos A.
Question : If $3+\cos ^2 \theta=3\left(\cot ^2 \theta+\sin ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\cos \theta+2 \sin \theta)$ ?
Question : If $\sin A=\frac{\sqrt{3}}{2}, 0<A<90^{\circ}$, then find the value of $2(\operatorname{cosec} A + \cot A)$.
Question : If $\tan A=\frac{4}{3}, 0 \leq A \leq 90^{\circ}$, then find the value of $\sin A$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile