Question : If $2x-\frac{1}{2x}=5,x\neq0$, then the value of $(x^2+\frac{1}{16x^2}-2)$is:
Option 1: $\frac{19}{4}$
Option 2: $\frac{23}{4}$
Option 3: $\frac{27}{4}$
Option 4: $\frac{31}{4}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{19}{4}$
Solution : Given; $2x-\frac{1}{2x}=5,x\neq0$ Dividing both sides by 2, we get $x-\frac{1}{4x}=\frac{5}{2}$ Now, squaring both sides, we get $(x^2+\frac{1}{16x^2}-2×x×\frac{1}{4x})=\frac{25}{4}$ ⇒$(x^2+\frac{1}{16x^2})=\frac{25}{4}+\frac{1}{2}$ ⇒$(x^2+\frac{1}{16x^2})=\frac{27}{4}$ ⇒$(x^2+\frac{1}{16x^2}-2)=\frac{27}{4}-2$ $\therefore (x^2+\frac{1}{16x^2}-2)=\frac{19}{4}$ Hence, the correct answer is $\frac{19}{4}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2x+\frac{2}{x}=3$, then the value of $x^{3}+\frac{1}{x^{3}}+2$ is:
Question : If $2x+\frac{1}{2x}=2,$ what is the value of $\sqrt{2\left (\frac{1}{x}\right)^{4}+\left (\frac{1}{x}\right)^{5}}\; ?$
Question : If $x=2+\sqrt3$, then the value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is:
Question : If $2x-\frac{2}{x}=1(x \neq 0)$, then the the value of $(x^3-\frac{1}{x^3})$ is:
Question : If $x\left(3-\frac{2}{x}\right)=\frac{3}{x}$, then the value of $x^3-\frac{1}{x^3}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile