Question : If $x = \sqrt[3]{5} + 2$, then the value of $x^3-6x^2+12x-13$ is:
Option 1: $–1$
Option 2: $1$
Option 3: $2$
Option 4: $0$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $0$
Solution : $x = \sqrt[3]{3} + 2$ ⇒ $x - 2 = \sqrt[3]{5}$ By cubing on both the sides, $⇒x^3-6x^2+3x (-2)^2-2^3=5$ [since $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$] $⇒x^3-6x^2+12x-8-5=0$ $⇒x^3-6x^2+12x-8-5=0$ $⇒x^3-6x^3+12x-13=0$ Hence, the correct answer is $0$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $x=\sqrt[3]{x^{2}+11} –2$, then the value of $(x^3+5x^2+12x)$ is:
Question : If $x=\sqrt{–\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$ where $x > 0$, then the value of $x$ is equal to:
Question : If $\sqrt{x}=\sqrt{3}-\sqrt{5}$, then the value of $x^2-16x+6$ is:
Question : If $x^{2}+y^{2}+6x+5=4(x-y)$, then $(x-y)$ is:
Question : If $x=\frac{1}{x-3},(x>0)$, then the value of $x+\frac{1}{x}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile