Question : If $(2+\sqrt{3})a=(2-\sqrt{3})b=1$, then the value of $\frac{1}{a}+\frac{1}{b}$ is:
Option 1: $1$
Option 2: $2$
Option 3: $2\sqrt{3}$
Option 4: $4$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4$
Solution : $(2+\sqrt{3})a=(2-\sqrt{3})b=1$ $(2+\sqrt{3})a=1$ $⇒ a = \frac{1}{2+\sqrt{3}}$ $⇒ \frac{1}{a} = 2-\sqrt{3}$ Again, $(2-\sqrt{3})b=1$ $⇒ b = \frac{1}{2-\sqrt{3}}$ $⇒ \frac{1}{b} = 2+\sqrt{3}$ $\frac{1}{a} + \frac{1}{b}=2-\sqrt{3}+2+\sqrt{3}$ $\frac{1}{a} + \frac{1}{b}=4$ Hence, the correct answer is $4$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sqrt{1+\frac{\sqrt{3}}{2}}-\sqrt{1-\frac{\sqrt{3}}{2}}=c$, then the value of $\mathrm{c}$ is:
Question : $\frac{1}{\sqrt a}-\frac{1}{\sqrt b}=0$, then the value of $\frac{1}{a}+\frac{1}{ b}$ is:
Question : If $\sin(\theta+30^{\circ})=\frac{3}{\sqrt{12}}$, then the value of $\cos^{2}\theta$ is:
Question : If $n= 7+4\sqrt{3}$, the value of $(\sqrt{n}+\frac{1}{\sqrt{n}})$ is:
Question : If $x=\sqrt{a}+\frac{1}{\sqrt{a}}$ and $y=\sqrt{a}-\frac{1}{\sqrt{a}}, (a>0),$ then the value of $(x^{4}+y^{4}-2x^{2}y^{2})$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile