Question : If $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}(a\neq b\neq c)$, then the value of $abc$ is:
Option 1: $\pm 1$
Option 2: $\pm 2$
Option 3: $0$
Option 4: $\pm \frac{1}{2}$
Correct Answer: $\pm 1$
Solution : $a+\frac{1}{b}=b+\frac{1}{c}$ ⇒ $(a-b) = \frac{(b-c)}{bc}$ ----------(i) $a+\frac{1}{b}=c+\frac{1}{a}$ ⇒ $(a-c) = \frac{(b-a)}{ba}$ ----------(ii) $b+\frac{1}{c}=c+\frac{1}{a}$ ⇒ $(b-c) = \frac{(c-a)}{ca}$ -----------(iii) Multiplying (i), (ii) and (iii), ⇒ $(a-b)(a-c)(b-c) = \frac{(b-c)(b-a)(c-a)}{bc×ba×ca}$ ⇒ $1 = \frac{1}{(abc)^2}$ ⇒ $abc = \pm 1$ Hence, the correct answer is $\pm 1$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $a+b+c=0$, then the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{a b}$ is:
Question : If the sum of $\frac{a}{b}$ and its reciprocal is 1 and $a\neq 0,b\neq 0$, then the value of $a^{3}+b^{3}$ is:
Question : The numerical value of $\frac{(a–b)^{2}}{(b–c)(c–a)}+\frac{(b–c)^{2}}{(c–a)(a–b)}+\frac{(c–a)^{2}}{(a–b)(b–c)}$ is: $(a\neq b\neq c)$
Question : If $a, b, c$ are all non-zero and $a+b+c=0$, then find the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{ab}$.
Question : If $(a^2 = b + c)$, $(b^2 = a + c)$, $(c^2 = b + a)$. Then, what will be the value of $(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1})$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile