Question : If $\frac{x}{y}=\frac{4}{5}$, then the value of $(\frac{4}{7}+\frac{2y–x}{2y+x})$ is:
Option 1: $\frac{3}{7}$
Option 2: $1\frac{1}{7}$
Option 3: $1$
Option 4: $2$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1$
Solution : Given: $\frac{x}{y}=\frac{4}{5}$ Divide $y$ in both numerator and denominator of the fraction, $\frac{2y – x}{2y+x}$, we get, $\frac{2–\frac{x}{y}}{2+\frac{x}{y}}$ Substitute the value of $\frac{x}{y}=\frac{4}{5}$ in the above equation, we get, = $\frac{2–\frac{4}{5}}{2+\frac{4}{5}}$ = $\frac{\frac{10–4}{5}}{\frac{10+4}{5}}=\frac{6}{14}=\frac{3}{7}$ The value of the expression $(\frac{4}{7}+\frac{2y–x}{2y+x})$ is given as, $(\frac{4}{7}+\frac{3}{7})=(\frac{4+3}{7})=\frac{7}{7}=1$ Hence, the correct answer is $1$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $X$ is 20% less than $Y$, then find the values of$\frac{Y–X}{Y}$ and $\frac{X}{X–Y}$.
Question : If $x+\frac{2}{x}=1$, then the value of $\frac{x^2+7x+2}{x^2+13x+2}$ is:
Question : If $x=5–\sqrt{21}$, the value of $\frac{\sqrt{x}}{\sqrt{32–2x}–\sqrt{21}}$ is:
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Question : If $x+\frac{1}{x}=3$, then the value of $\frac{3x^{2}-4x+3}{x^{2}-x+1}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile