Question : If $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$, then the value of $\frac{x^2}{y}+\frac{y^2}{x}$ is:
Option 1: $\sqrt{3}$
Option 2: $3\sqrt{3}$
Option 3: $16\sqrt{3}$
Option 4: $2\sqrt{3}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $3\sqrt{3}$
Solution : Given: $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$ $⇒x=\frac{2}{\sqrt{3}}, y =\frac{4}{\sqrt{3}}$ Now, $\frac{x^2}{y}+\frac{y^2}{x}$ $=\frac{(\frac{2}{\sqrt{3}})^2}{\frac{4}{\sqrt{3}}}+\frac{(\frac{4}{\sqrt{3}})^2}{\frac{2}{\sqrt{3}}}$ $=\frac{1}{\sqrt{3}}+\frac{8}{\sqrt{3}}$ $=3\sqrt{3}$ Hence, the correct answer is $3\sqrt{3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x^{4}+\frac{1}{x^{4}}=16$, then what is the value of $x^{2}+\frac{1}{x^{2}}$?
Question : If $\sin (x - y) = \frac{1}2$ and $\cos (x + y) = \frac{1}2$, then what is the value of $\sin x \cos x + 2\sin^2x + cos^3x \sec x$?
Question : If $x^2+y^2=427$ and $xy=202$, then find the value of $\frac{x+y}{x-y}$.
Question : If $x+y=4, x^{2}+y^{2}=14$ and $x>y$, then the correct value of $x$ and $y$ is:
Question : If $\sqrt{y}=4x$, then $\frac{x^{2}}{y}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile