Question : If $2s = a + b + c$, then the value of $s(s - c) + (s - a)(s - b)$ is:
Option 1: $ab$
Option 2: $abc$
Option 3: $0$
Option 4: $\frac{a+b+c}{2}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $ab$
Solution : Given: $2s = a + b + c$ ⇒ $s = \frac{a\:+\:b\:+\:c}{2}$ Now, $s(s - c) = (\frac{a\:+\:b\:+\:c}{2})(\frac{a\:+\:b\:+\:c}{2}-c)$ ⇒ $s(s - c) =(\frac{a\:+\:b\:+\:c}{2})(\frac{a\:+\:b\:-\:c}{2})$ Also, $(s - a)(s - b) = (\frac{a\:+\:b\:+\:c}{2}-a)(\frac{a\:+\:b\:+\:c}{2}-b)$ ⇒ $(s - a)(s - b) = (\frac{b\:+\:c\:-\:a}{2})(\frac{a\:+\:c\:-\:b}{2})$ So, $s(s - c) + (s - a)(s - b)$ $= (\frac{a\:+\:b\:+\:c}{2})(\frac{a\:+\:b\:–\:c}{2})+(\frac{b\:+\:c\:–\:a}{2})(\frac{a\:+\:c\:–\:b}{2})$ $= \frac{1}{4}[(a+b)^2-c^2+c^2-(a-b)^2]$ $= \frac{1}{4}[(a+b)^2-(a-b)^2]$ $= \frac{1}{4}(4ab)$ $=ab$ Hence, the correct answer is $ab$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Question : If $a+\frac{1}{b}=1$, $b+\frac{1}{c}=1$ , then the value of $(abc)$ is:
Question : If $\frac{a^{2} - bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$, then the value of $\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}$ is:
Question : If $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$ where $a \neq b\neq c\neq 0$, then the value of $a^{2}b^{2}c^{2}$ is:
Question : If $\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1$, then find the value of $\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile