Question : If $\cos^{4}\theta-\sin^{4}\theta=\frac{2}{3}$, then the value of $1-2\sin^{2}\theta$ is:
Option 1: $\frac{2}{3}$
Option 2: $\frac{3}{2}$
Option 3: $1$
Option 4: $0$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{2}{3}$
Solution : $\cos^{4}\theta-\sin^{4}\theta=\frac{2}{3}$ ⇒ $(\cos^{2}\theta-\sin^{2}\theta)(\cos^{2}\theta+\sin^{2}\theta) = \frac{2}{3}$ We know that, $\cos^{2}\theta+\sin^{2}\theta= 1$ ⇒ $(\cos^{2}\theta-\sin^{2}\theta)=\frac{2}{3}$ Putting the value of $\cos^{2}\theta = 1-\sin^{2}\theta$ ⇒ $(1-\sin^{2}\theta-\sin^{2}\theta)=\frac{2}{3}$ $\therefore(1-2\sin^{2}\theta)=\frac{2}{3}$ Hence, the correct answer is $\frac{2}{3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=3$, then the value of $\sin^{4}\theta$ is:
Question : What is the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$?
Question : If $\sin \theta-\cos \theta=0$, then what is the value of $\sin ^2 \theta+\tan ^2 \theta$ ?
Question : If $\cos\theta - \sin\theta =0$, then $(\sin^8\theta+\cos^8\theta)$ is:
Question : If $\sin \theta \cos \theta=\frac{1}{\sqrt{3}}$ then the value of $\left(\sin ^4 \theta+\cos ^4 \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile