Question : If $\frac{a^{2} - bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$, then the value of $\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}$ is:
Option 1: 0
Option 2: 1
Option 3: –1
Option 4: 2
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : $\frac{a^{2}-bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$ Adding 3 on both sides, $⇒(\frac{a^{2}-bc}{a^{2}+bc}+1)+(\frac{b^{2}-ca}{b^{2}+ca}+1)+(\frac{c^{2}-ab}{c^{2}+ab}+1)=1+3$ $⇒(\frac{a^{2}-bc+a^{2}+bc}{a^{2}+bc})+(\frac{b^{2}-ca+b^{2}+ca}{b^{2}+ca})+(\frac{c^{2}-ab+c^{2}+ab}{c^{2}+ab})=4$ $⇒(\frac{2a^{2}}{a^{2}+bc})+(\frac{2b^{2}}{b^{2}+ca})+(\frac{2c^{2}}{c^{2}+ab})=4$ $⇒\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}=2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Question : If $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$ where $a \neq b\neq c\neq 0$, then the value of $a^{2}b^{2}c^{2}$ is:
Question : If $a+b=2c$, then the value of $\frac{a}{a–c}+\frac{c}{b–c}$ is equal to (where $a\neq b\neq c$):
Question : If $a+b+c = 0$, then the value of $\small \frac{1}{(a+b)(b+c)}+\frac{1}{(b+c)(c+a)}+\frac{1}{(c+a)(a+b)}$ is:
Question : If $\frac{x-a^{2}}{b+c}+\frac{x-b^{2}}{c+a}+\frac{x-c^{2}}{a+b} = 4(a+b+c)$, then $x$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile