Question : If $\operatorname{cosec} 39°=x$, then the value of $\frac{1}{\operatorname{cosec}^{2}51°}+\sin^{2}39°+\tan^{2}51°-\frac{1}{\sin^{2}51°\sec^{2}39°}$ is:
Option 1: $\sqrt{x^{2}-1}$
Option 2: $\sqrt{1-x^{2}}$
Option 3: $x^{2}-1$
Option 4: $1-x^{2}$
Correct Answer: $x^{2}-1$
Solution : Given: $\frac{1}{\operatorname{cosec}^{2}51°}+\sin^{2}39°+\tan^{2}51°-\frac{1}{\sin^{2}51°\sec^{2}39°}$ = ${\sin^{2}51°}+\sin^2(90°-51°)+\tan^{2}51°-\frac{\cos^{2}39°}{\sin^{2}(90°-39°)}$ = ${\sin^{2}51°}+\cos^251°+\tan^{2}51°-\frac{\cos^{2}39°}{\cos^{2}39°}$ = $1+\tan^251°-1$ = $1+\cot^239°-1$ $[\because \tan^251°=\cot^239°]$ = $\operatorname{cosec}^239°-1 $ = $x^{2}-1$ Hence, the correct answer is $x^{2}-1$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : The value of $\sqrt{\frac{1+\sin A}{1-\sin A}}$ is:
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Question : If $\sin A=\frac{\sqrt{3}}{2}, 0<A<90^{\circ}$, then find the value of $2(\operatorname{cosec} A + \cot A)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile