15 Views
Question : If $a= \frac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x+2}-\sqrt{x-2}}$, then the value of $(a^{2}-ax)$ is:
Option 1: 1
Option 2: 2
Option 3: –1
Option 4: 0
Answer (1)
Correct Answer: –1
Solution :
To solve $(a^{2}-ax)$, we first need to calculate the value of $a$:
$a= \frac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x+2}-\sqrt{x-2}} \times \frac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x+2}+\sqrt{x-2}} = \frac{2x+2\sqrt{x^2-4}}{4}= \frac{x+\sqrt{x^2-4}}{2}$
⇒ $2a=x+\sqrt{x^2-4}$
⇒ $2a-x=\sqrt{x^2-4}$
Squaring both sides, we have,
⇒ $4a^2+x^2-4ax=x^2-4$
⇒ $a^2-ax=-1$
Hence, the correct answer is –1.
Know More About
Related Questions
TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Upcoming Exams
Application Date:
28 Mar, 2025
- 29 Apr, 2025
Result Date:
31 Mar, 2025
- 30 Apr, 2025
Mains Exam
Result Date:
1 Apr, 2025
- 30 Apr, 2025
Mains
Admit Card Date:
17 Apr, 2025
- 5 May, 2025
Application Date:
15 Apr, 2025
- 30 Apr, 2025