Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Option 1: $2$
Option 2: $1$
Option 3: $0$
Option 4: $\frac{1}{2}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{1}{2}$
Solution : Given that $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, we can rewrite this equation as: $⇒\frac{2}{a}+1+\frac{2}{b}+1+\frac{2}{c}+1=4$ Simplifying, we get: $⇒\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=1$ Multiplying through by $abc$, we get: $⇒2bc+2ac+2ab=abc$ Rearranging terms, we get: $⇒abc=2(ab+bc+ca)$ $\therefore\frac{ab+bc+ca}{abc}=\frac{1}{2}$ Hence, the correct answer is $\frac{1}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\frac{a^{2} - bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$, then the value of $\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}$ is:
Question : $a, b, c$ are the lengths of three sides of a triangle ABC. If $a, b, c$ are related by the relation $a^{2}+b^{2}+c^{2}=ab+bc+ca$, then the value of $\sin^{2}A+\sin^{2}B+\sin^{2}C$ is:
Question : If $a+\frac{1}{b}=1$, $b+\frac{1}{c}=1$ , then the value of $(abc)$ is:
Question : What is the value of ${a}^3+{b}^3+{c}^3$ if $(a+b+c)=0$?
Question : If $2s = a + b + c$, then the value of $s(s - c) + (s - a)(s - b)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile