Question : If $a+\frac{1}{a}=\sqrt{3}$, then the value of $a^{18}+a^{12}+a^{6}+1$ is:
Option 1: 0
Option 2: 1
Option 3: –1
Option 4: 4
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : Given: $a^{18}+a^{12}+a^{6}+1$ = $a^{6}(a^{12}+1)+1(a^{12}+1)$ = $(a^{6}+1)(a^{12}+1)$-----------------------------------------------(i) Now, $a+\frac{1}{a} = \sqrt{3}$ Squaring both sides, $(a+\frac{1}{a})^2 = (\sqrt{3})^2$ ⇒ $(a)^2+(\frac{1}{a})^2+2×a×\frac{1}{a} = 3$ ⇒ $(a)^2+(\frac{1}{a})^2 = 3-2 = 1$ Cubing both sides, $((a)^2+(\frac{1}{a})^2)^3 = 1^3$ ⇒ $(a)^6+(\frac{1}{a})^6+3×((a)^2+(\frac{1}{a})^2) = 1^3$ ⇒ $(a)^6+(\frac{1}{a})^6 = 1 - 3$ ⇒ $\frac{((a)^{12}+1)}{(a)^6} = -2$ ⇒ $a^{12}+1+2a^6 = 0$ ⇒ $(a^{6}+1)^2 = 0$ ⇒ $(a^{6}+1) = 0$ -------------------------------------------------(ii) Substituting (ii) in (i) $(a^{6}+1)(a^{12}+1)$ = 0 Thus, $a^{18}+a^{12}+a^{6}+1$ = 0 Hence, the correct answer is 0.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x+\frac{1}{x}=\sqrt{3}$ then, the value of $x^{30}+x^{24}+x^{18}+x^{12}+x^{6}+1$ is:
Question : If $a=\frac{1}{a-\sqrt{6}}$ and $(a>0)$, then the value of $\left(a+\frac{1}{a}\right)$ is:
Question : The simplified value of $\frac{3\sqrt 2 }{\sqrt3 + \sqrt6} - \frac{4 \sqrt 3 }{\sqrt{6}+ \sqrt {2}} + \frac{\sqrt 6}{\sqrt{3}+ \sqrt 2}$ is:
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : The value of exponential form of $\sqrt{\sqrt{2}\sqrt{3}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile