Question : If $\frac{a}{1-2a}+\frac{b}{1-2b}+\frac{c}{1-2c}=\frac{1}{2}$, then the value of $\frac{1}{1-2a}+\frac{1}{1-2b}+\frac{1}{1-2c}$ is:
Option 1: 1
Option 2: 2
Option 3: 3
Option 4: 4
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 4
Solution : Given: $\frac{a}{1-2a}+\frac{b}{1-2b}+\frac{c}{1-2c}=\frac{1}{2}$ Multiplying by 2 on both sides ⇒ $\frac{2a}{1-2a}+\frac{2b}{1-2b}+\frac{2c}{1-2c}=1$ Adding 3 on both sides ⇒ $1+\frac{2a}{1-2a}+1+\frac{2b}{1-2b}+1+\frac{2c}{1-2c}=1+3$ ⇒ $\frac{1}{1-2a}+\frac{1}{1-2b}+\frac{1}{1-2c}=4$ Hence, the correct answer is 4.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of $x$ which satisfies the equation $\frac{x \:+\: a^2 \:+\: 2c^2}{b \:+\: c} + \frac{x \:+\: b^2 \:+\: 2a^2}{c+a} + \frac{x \:+\: c^2 \:+\: 2b^2}{a \:+\: b} = 0$ is:
Question : If $x+\frac{1}{x}=c+\frac{1}{c}$, then the value of $x$ is:
Question : If $a+b=2c$, then the value of $\frac{a}{a–c}+\frac{c}{b–c}$ is equal to (where $a\neq b\neq c$):
Question : If $a=299, b=298, c=297$, then the value of $2a^3+2b^3+2c^3-6abc$ is:
Question : If $\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1$, then find the value of $\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile