Question : If $x=\frac{8ab}{a+b}(a\neq b),$ then the value of $\frac{x+4a}{x–4a}+\frac{x+4b}{x–4b}$ is:
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: 4
Correct Answer: 2
Solution : Given: $x=\frac{8ab}{a+b}(a\neq b)$ Then, putting the value of $x$ in expression $\frac{x+4a}{x–4a}+\frac{x+4b}{x–4b}$, we have, = $\frac{\frac{8ab}{a+b}+4a}{\frac{8ab}{a+b}–4a}+\frac{\frac{8ab}{a+b}+4b}{\frac{8ab}{a+b}–4b}$ = $\frac{\frac{8ab+4a^{2}+4ab}{a+b}}{\frac{8ab–4a^{2}–4ab}{a+b}}+\frac{\frac{8ab+4ab+4b^{2}}{a+b}}{\frac{8ab–4ab–4b^{2}}{a+b}}$ = $\frac{{8ab+4a^{2}+4ab}}{8ab–4a^{2}–4ab}+\frac{8ab+4ab+4b^{2}}{8ab–4ab–4b^{2}}$ = $\frac{{12ab+4a^{2}}}{4ab–4a^{2}}+\frac{12ab+4b^{2}}{4ab–4b^{2}}$ = $\frac{{4a(3b+a)}}{4a(b–a)}+\frac{4b(3a+b)}{4b(a–b)}$ = $\frac{{(3b+a)}}{(b–a)}+\frac{(3a+b)}{(a–b)}$ = $\frac{{(3b+a–3a–b)}}{(b–a)}$ = $\frac{{(2b–2a)}}{(b–a)}$ = $\frac{{2(b–a)}}{(b–a)}$ = 2 Hence, the correct answer is 2.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If the sum of $\frac{a}{b}$ and its reciprocal is 1 and $a\neq 0,b\neq 0$, then the value of $a^{3}+b^{3}$ is:
Question : The numerical value of $\frac{(a–b)^{2}}{(b–c)(c–a)}+\frac{(b–c)^{2}}{(c–a)(a–b)}+\frac{(c–a)^{2}}{(a–b)(b–c)}$ is: $(a\neq b\neq c)$
Question : if $x+\frac{1}{x}=2$, then the value of $x^4+\frac{1}{x^4}$=__________.
Question : If $x^{2}+1=2x$, then the value of $\frac{x^{4}+\frac{1}{x^{2}}}{x^{2}-3x+1}$ is:
Question : If $(\frac{x}{y})^{5a-3}=(\frac{y}{x})^{17-3a}$, then what is the value of $a$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile