7 Views
Question : If $a+b+c=0$, then the value of $\frac{a^{2}+b^{2}+c^{2}}{ab+bc+ca}$ is:
Option 1: 2
Option 2: –2
Option 3: 0
Option 4: 4
Answer (1)
Correct Answer: –2
Solution :
Given: $a+b+c=0$
We know that $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)$
Putting the value of $a+b+c=0$, we have,
⇒ $(0)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)$
⇒ $a^{2}+b^{2}+c^{2}=–2(ab+bc+ca)$
⇒ $\frac{(a^{2}+b^{2}+c^{2})}{(ab+bc+ca)}=–2$
Hence, the correct answer is –2.
Know More About
Related Questions
TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Upcoming Exams
Application Date:
28 Mar, 2025
- 29 Apr, 2025
Result Date:
31 Mar, 2025
- 30 Apr, 2025
Mains Exam
Result Date:
1 Apr, 2025
- 30 Apr, 2025
Application Date:
15 Apr, 2025
- 30 Apr, 2025
Mains
Admit Card Date:
17 Apr, 2025
- 5 May, 2025