Question : If $2x+\frac{1}{4x}=1$, then the value of $x^{2}+\frac{1}{64x^{2}}$ is:
Option 1: $0$
Option 2: $1$
Option 3: $\frac{1}{4}$
Option 4: $2$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : Given: $2x+\frac{1}{4x}=1$ Dividing by 2 on both sides, ⇒ $x+\frac{1}{8x}=\frac{1}{2}$ ----------------------------------(i) Now, $x^{2}+\frac{1}{64x^{2}}=(x+\frac{1}{8x})^2$ – $2×x×\frac{1}{8x}$ Substituting the values, we get ⇒ $x^{2}+\frac{1}{64x^{2}}=(\frac{1}{2})^2$ – $\frac{1}{4}$ ⇒ $x^{2}+\frac{1}{64x^{2}}= 0$ Hence, the correct answer is $0$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $2x-3(4-2x)<4x-5<4x+\frac{2x}{3}$, then $x$ can take which of the following values?
Question : If $x+\frac{1}{x}=3$, then the value of $\frac{3x^{2}-4x+3}{x^{2}-x+1}$ is:
Question : If $x+\left [\frac{1}{(4x)} \right]=\frac{5}{2}$; then, what is the value of $\frac{64x^{6}+1}{8x^{3}} \;?$
Question : If for non-zero $x,x^{2}-4x-1=0,$ then the value of $x^{2}+\frac{1}{x^{2}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile