Question : If $3a^{2}= b^{2}\neq0$, then the value of $\frac{\left (a+b \right)^{3}-\left (a-b \right)^{3}}{\left (a+b \right)^{2}+\left (a-b \right)^{2}}$ is:
Option 1: $\frac{3b}{2}$
Option 2: $b$
Option 3: $\frac{b}{2}$
Option 4: $\frac{2b}{3}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{3b}{2}$
Solution : Expression = $\frac{(a + b)^3 - (a - b)^3 }{(a + b)^2 + (a - b)^2} $ and $3a^{2}= b^{2}\neq0$ Using identities: $(a + b)^3=a^3 + b^3 + 3a^2b + 3ab^2$ and $(a - b)^3=a^3 - b^3 - 3a^2b + 3ab^2$, Now, $\frac{(a + b)^3 - (a - b)^3 }{(a + b)^2 + (a - b)^2}$ = $ \frac{(a^3 + b^3 + 3a^2b + 3ab^2) - (a^3 - b^3 - 3a^2b + 3ab^2)}{(a^{2} + b^{2} + 2ab) + (a^{2} + b^{2} - 2ab)}$ = $\frac{\left(a^{3} + b^{3} + 3a^{2}b + 3ab^{2} - a^{3} + b^{3} +3a^{2}b - 3ab^{2}\right)}{(a^2 + b^2 + a^2 + b^2)}$ = $\frac{6a^2b + 2b^3}{2(a^2 + b^2)}$ Since $3a^{2}= b^{2}\neq0$, $\frac{(a + b)^3 - (a - b)^3 }{(a + b)^2 + (a - b)^2}$ = $\frac{2b(3a^{2} + b^2)}{2(a^2 + b^2)}$ = $\frac{b(b^2 + b^2)}{\frac{b^2}{3}+b^2}$ = $\frac{b \times 2b^{2}}{\frac{4b^2}{3}}$ = $\frac{3b}{2}$ Hence, the correct answer is $ \frac{3b}{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\left(a+\frac{1}{a}\right)=6$, then what is the value of $\frac{3}{4}\left(a^2+\frac{1}{a^2}\right)$?
Question : If $\small x=a\left (b-c \right),\; y=b\left (c-a \right) ,\; z=c\left (a-b \right)$, then the value of $\left (\frac{x}{a} \right)^{3}+\left (\frac{y}{b} \right)^{3}+\left (\frac{z}{c} \right)^{3}$ is:
Question : The value of $2 \frac{3}{5} \div\left[2 \frac{1}{3} \div\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{2}{3}\right)\right\}\right]$ is equal to:
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Question : If $x=a\left ( \sin\theta+\cos\theta \right )$ and $y=b\left ( \sin\theta-\cos\theta \right )$, then the value of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile