Question : If $x\cos^{2}30^{\circ}\cdot \sin60^{\circ}=\frac{\tan^{2}45^{\circ}\cdot \sec60^{\circ}}{\operatorname{cosec}60^{\circ}}$, then the value of $x$ is:
Option 1: $\frac{1}{\sqrt{3}}$
Option 2: $\frac{1}{\sqrt{2}}$
Option 3: $2\frac{2}{3}$
Option 4: $\frac{1}{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2\frac{2}{3}$
Solution : Given that $x\cos^{2}30^{\circ}\cdot \sin60^{\circ}=\frac{\tan^{2}45^{\circ}\cdot \sec60^{\circ}}{\operatorname{cosec}60^{\circ}}$ We know that, $\cos30^{\circ} = \frac{\sqrt{3}}{2}$, so $\cos^{2}30^{\circ} = \frac{3}{4}$ $\sin60^{\circ} = \frac{\sqrt{3}}{2}$ $\tan45^{\circ} = 1$, so $\tan^{2}45^{\circ} = 1$ $\sec60^{\circ}= 2$ $\operatorname{cosec}60^{\circ} =\frac{2}{\sqrt{3}}$ Putting these values in the equation, we get: $x×\frac{3}{4}×\frac{\sqrt{3}}{2}=\frac{1×2}{\frac{2}{\sqrt{3}}}$ ⇒ $x×\frac{3}{4}×\frac{\sqrt{3}}{2}=\frac{2×\sqrt{3}}{{2}}$ Solving for $x$, we get: ⇒ $x=\frac{8}{3}=2\frac{2}{3}$ Hence, the correct answer is $2\frac{2}{3}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of $\operatorname{cosec} 30^{\circ}-\cos 60^{\circ}$ is:
Question : If ${\operatorname{cosec} 39^{\circ}} = x$, then the value of $ \frac{1}{\operatorname{cosec}^2 51^{\circ}} +\sin^239^{\circ} +\tan ^251^{\circ} -\frac{1}{\sin ^2 51^{\circ} \sec ^2 39^{\circ}}$ is:
Question : Simplify $\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
Question : What will be the value of $\frac{\sin 30^{\circ} \sin 40^{\circ} \sin 50^{\circ} \sin 60^{\circ}}{\cos 30^{\circ} \cos 40^{\circ} \cos 50^{\circ} \cos 60^{\circ}}$?
Question : Find the value of the given expression. $\frac{4}{3} \tan^2 45^{\circ}+3 \cos^2 30^{\circ}-2 \sec^2 30^{\circ}-\frac{3}{4} \cot^2 60^{\circ}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile