Question : If $\tan\alpha=2$, then the value of $\frac{\operatorname{cosec}^{2}\alpha-\sec^{2}\alpha}{\operatorname{cosec}^{2}\alpha+\sec^{2}\alpha}$ is:
Option 1: $-\frac{15}{9}$
Option 2: $-\frac{3}{5}$
Option 3: $\frac{3}{5}$
Option 4: $\frac{17}{5}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $-\frac{3}{5}$
Solution : Given: $\tan\alpha=2$ We know that $\sec^{2}\alpha = 1 + \tan^{2}\alpha$ and $\operatorname{cosec}^{2}\alpha = 1 + \cot^{2}\alpha$ Since $\tan\alpha = 2$, we have $\sec^{2}\alpha = 1 + (2)^{2} = 5$ Also, $\cot\alpha = \frac{1}{\tan\alpha} = \frac{1}{2}$ So $\operatorname{cosec}^{2}\alpha = 1 + (\frac{1}{2})^{2} = \frac{5}{4}$ Putting the values, we get: $\frac{\operatorname{cosec}^{2}\alpha-\sec^{2}\alpha}{\operatorname{cosec}^{2}\alpha+\sec^{2}\alpha} = \frac{\frac{5}{4}-5}{\frac{5}{4}+5} = \frac{\frac{-15}{4}}{\frac{25}{4}} = -\frac{15}{25} = -\frac{3}{5}$ Hence, the correct answer is $-\frac{3}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Using $\operatorname{cosec}(\alpha+\beta)=\frac{\sec \alpha \times \sec \beta \times \operatorname{cosec} \alpha \times \operatorname{cosec} \beta}{\sec \alpha \times \operatorname{cosec} \beta+\operatorname{cosec} \alpha \times \sec \beta}$, find the value of
Question : If $\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=\frac{1}{7}, \theta$ lies in first quadrant, then the value of $\frac{\operatorname{cosec} \theta+\cot ^2 \theta}{\operatorname{cosec} \theta-\cot ^2 \theta}$ is:
Question : If $\tan ^2 \alpha=3+Q^2$, then $\sec \alpha+\tan ^3 \alpha \operatorname{cosec} \alpha=?$
Question : $\frac{(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)}{(\sec \theta+\tan \theta)(1-\sin \theta)}$ is equal to:
Question : Which of the following is equal to $\frac{1}{\tan \theta}+\tan \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile