Question : If $\sin(\theta+30^{\circ})=\frac{3}{\sqrt{12}}$, then the value of $\cos^{2}\theta$ is:
Option 1: $\frac{1}{4}$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\frac{3}{4}$
Option 4: $\frac{1}{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{3}{4}$
Solution : Given: $\sin(\theta+30^{\circ})=\frac{3}{\sqrt{12}}$ ⇒ $\sin(\theta+30^{\circ})=\frac{\sqrt{3}}{2}$ ⇒ $\sin(\theta+30^{\circ})=\sin(60^{\circ})$ ⇒ $\theta+30^{\circ}=60^{\circ}$ ⇒ $\theta=30^{\circ}$ Substituting $\theta=30^{\circ}$, we get, $\cos^{2}\theta=\cos^{2}(30^{\circ})=(\frac{\sqrt3}{2})^{2}=\frac{3}{4}$ Hence, the correct answer is $\frac{3}{4}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What will be the value of $\frac{\sin 30^{\circ} \sin 40^{\circ} \sin 50^{\circ} \sin 60^{\circ}}{\cos 30^{\circ} \cos 40^{\circ} \cos 50^{\circ} \cos 60^{\circ}}$?
Question : If $\cos^2 \theta=\frac{3}{4}$, where $\theta$ is an acute angle, then the value of $\sin \left(\theta+30^{\circ}\right)$ is:
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : If $7\sin^{2}\theta+3\cos^{2}\theta=4$, and $0^{\circ}< \theta< 90^{\circ}$, then the value of $\tan\theta$ is:
Question : If $\sin\theta +\cos\theta=\sqrt{2}\sin(90^{\circ}-\theta)$, then the value of $\cot\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile