Question : If $\sin17°=\frac{x}{y}$, then the value of $(\sec17°–\sin73°)$ is:
Option 1: $\frac{y^{2}}{x\sqrt{y^{2}–x^{2}}}$
Option 2: $\frac{x^{2}}{y\sqrt{y^{2}–x^{2}}}$
Option 3: $\frac{x^{2}}{y\sqrt{x^{2}–y^{2}}}$
Option 4: $\frac{y^{2}}{x\sqrt{x^{2}–y^{2}}}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{x^{2}}{y\sqrt{y^{2}–x^{2}}}$
Solution : Given: $\sin17°=\frac{x}{y}$ BC = $\sqrt{y^{2}-x^{2}}$ So, $\sec17°=\frac{y}{\sqrt{y^{2}–x^{2}}}$ and $\sin73°=\frac{\sqrt{y^{2}–x^{2}}}{y}$ $\therefore(\sec17°–\sin73°)=\frac{y}{\sqrt{y^{2}–x^{2}}}–\frac{\sqrt{y^{2}–x^{2}}}{y}$= $\frac{y^{2}–(y^{2}–x^{2})}{y\sqrt{y^{2}–x^{2}}}$= $\frac{x^{2}}{y\sqrt{y^{2}–x^{2}}}$ Hence, the correct answer is $\frac{x^{2}}{y\sqrt{y^{2}–x^{2}}}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\cos27^{\circ}$ = $x$, then the value of $\tan 63°$ is:
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $x=\frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}+\sqrt{4}}$ and $y=\frac{\sqrt{5}+\sqrt{4}}{\sqrt{5}-\sqrt{4}}$ then the value of $\frac{x^2-x y+y^2}{x^2+x y+y^2}=$?
Question : If $xy = -6$ and $x^3+ y^3= 19$ ($x$ and $y$ are integers), then what is the value of $\frac{1}{x^{–1}}+\frac{1}{y^{–1}}$?
Question : If $x+ \sqrt{5} = 5+\sqrt{y}$ are positive integers, then the value of $\frac{\sqrt{x}+y}{x+ \sqrt{y}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile