Question : If $x^2+\frac{1}{x^2}=2$, then the value of $x-\frac{1}{x}$ is:
Option 1: –2
Option 2: 0
Option 3: 1
Option 4: –1
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 0
Solution : Given: $x^2+\frac{1}{x^2}=2$ We know that the algebraic identity is $(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2$ Substitute the value of $x^2+\frac{1}{x^2}=2$ in the above expression, we get, $(x-\frac{1}{x})^2=2-2$ ⇒ $(x-\frac{1}{x})^2=0$ ⇒ $(x-\frac{1}{x})=0$ Hence, the correct answer is 0.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $(x+\frac{1}{x})=–2$, then the value of $(x^7+\frac{1}{x^7})$ is:
Question : If $x+ \frac{1}{x} =2$, then the value of $({x}^{99}+ \frac{1}{x^{99}} –2)$ is:
Question : If $x+5+\frac{1}{x+1}=6$, then the value of $(x+1)^{3}+\frac{1}{(x+1)^{3}}$ is:
Question : If $x+\frac{1}{x}=-2$, then what is the value of $x^{17}+x^{-17}+x^{12}+x^{-12} ?(x<0)$
Question : If $x+\frac{1}{x}=2$, then the value of $x^{57}+\frac{1}{x^{57}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile