Question : If $\sec(7\theta+28°)= \operatorname{cosec} (30°-3\theta)$. Then, the value of $\theta$ is:
Option 1: 8°
Option 2: 5°
Option 3: 60°
Option 4: 9°
Correct Answer: 8°
Solution : Given: If $\sec(7\theta+28°)= \operatorname{cosec} (30°–3\theta)$. $\sec A = \operatorname{cosec} B$, when $A+B = 90°$ Then, $7\theta +28° + 30°-3 \theta = 90°$ ⇒ $4\theta + 58° = 90°$ ⇒ $4\theta = 90°-58°$ ⇒ $4\theta = 32°$ $\therefore \theta = \frac{32°}{4} = 8°$ Hence, the correct answer is 8°.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $(\operatorname{cosec} \theta-\cot \theta) = \frac{7}{2}$, the value of $\operatorname{cosec} \theta$ is:
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : If $\theta$ is an acute angle and $\sin \theta+\operatorname{cosec} \theta=2$, then the value of $\sin ^5 \theta+\operatorname{cosec}^5 \theta$ is:
Question : If $\tan (11 \theta)=\cot (7 \theta)$, then what is the value of $\sin ^2(6 \theta)+\sec ^2(9 \theta)+\operatorname{cosec}^2(12 \theta) ?$
Question : If $\operatorname{cosec} 39°=x$, then the value of $\frac{1}{\operatorname{cosec}^{2}51°}+\sin^{2}39°+\tan^{2}51°-\frac{1}{\sin^{2}51°\sec^{2}39°}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile