Question : If $a=\frac{1}{a - 5}(a>0)$, then the value of $a+\frac{1}{a}$ is:
Option 1: $\sqrt{29}$
Option 2: $–\sqrt{27}$
Option 3: $-\sqrt{29}$
Option 4: $\sqrt{27}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt{29}$
Solution : Given: $a=\frac{1}{a-5}(a>0)$ ⇒ $a^{2}-5a=1$ Dividing both sides by $a$ we have, ⇒ $a - 5=\frac{1}{a}$ ⇒ $a-\frac{1}{a}=5$ We know that: $(a+\frac{1}{a})^{2}-(a-\frac{1}{a})^{2}=4$ ⇒ $(a+\frac{1}{a})^{2}-(5)^{2}=4$ ⇒ $(a+\frac{1}{a})^{2}=25+4$ $\therefore(a+\frac{1}{a})=\sqrt{29}$ Hence, the correct answer is $\sqrt{29}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2x=\sqrt{a}+\frac{1}{\sqrt{a}}, a>0$, then the value of $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ is:
Question : If $\frac{\sqrt{38-5 \sqrt{3}}}{\sqrt{26+7 \sqrt{3}}}=\frac{a+b \sqrt{3}}{23}, b>0$, then the value of $(b-a)$ is:
Question : Which of the following is TRUE? I. $\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt[4]{29}}>\frac{1}{\sqrt5}$ II. $\frac{1}{\sqrt[4]{29}}>\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt5}$ III. $\frac{1}{\sqrt5}>\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt[4]{29}}$
Question : If $\frac{\sqrt{26-7 \sqrt{3}}}{\sqrt{14+5 \sqrt{3}}}=\frac{b+a \sqrt{3}}{11}, b>0$, then what is the value of $\sqrt{(\mathrm{b}-\mathrm{a})}$?
Question : If $\frac{22 \sqrt{2}}{4 \sqrt{2}-\sqrt{3+\sqrt{5}}}=a+\sqrt{5} b$, with $a, b>0$, then what is the value of $(a b):(a+b)$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile