14 Views
Question : If $a+\frac{1}{a}=1$, then the value of $\frac{a^2-a+1}{a^2+a+1}$ is $(a\neq 0)$:
Option 1: 1
Option 2: –1
Option 3: 0
Option 4: 2
Answer (1)
Correct Answer: 0
Solution :
Given: $a+\frac{1}{a}=1$
⇒ $\frac{a^2+1}{a}=1$
⇒ $a^2+1=a$
⇒ $a^2-a+1=0$
Now, $\frac{a^2–a+1}{a^2+a+1}=\frac{0}{a^2+a+1}=0$
Hence, the correct answer is 0.
SSC CGL Complete Guide
Candidates can download this ebook to know all about SSC CGL.
Download EBookKnow More About
Related Questions
TOEFL ® Registrations 2025
Apply
Accepted by 13,000 universities worldwide | Offered in 200+ countries | 40 million people have taken TOEFL Test
Upcoming Exams
Preliminary Exam
Admit Card Date:
13 May, 2025
- 25 May, 2025
Admit Card Date:
5 Jun, 2025
- 15 Jun, 2025
1st Stage CBT
Exam Date:
5 Jun, 2025
- 23 Jun, 2025