Question : If $x+ \frac{1}{x} =2$, then the value of $({x}^{99}+ \frac{1}{x^{99}} –2)$ is:
Option 1: –2
Option 2: 0
Option 3: 2
Option 4: 4
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : Given: $⇒x+ \frac{1}{x} =2$ By squaring both sides, $({x}+ \frac{1}{x})^{2} =({2})^{2}$ $⇒{x}^{2}+ \frac{1}{x^{2}}+2×x×\frac{1}{x} =4$ $⇒{x}^{2}+ \frac{1}{x^{2}}=2$ Similarly, we can find, $({x}+ \frac{1}{x})^{3} =({2})^{3}$ $⇒{x}^{3}+ \frac{1}{x^{3}}+3×x×\frac{1}{x}(x+ \frac{1}{x}) =8$ $⇒{x}^{3}+ \frac{1}{x^{3}}+3×2 =8$ $⇒{x}^{3}+ \frac{1}{x^{3}}=2$ Similarly, we can find the value of, $⇒{x}^{99}+ \frac{1}{x^{99}}=2$ $\therefore {x}^{99}+ \frac{1}{x^{99}} -2=0$ Hence, the correct answer is 0.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(x+\frac{1}{x})=–2$, then the value of $(x^7+\frac{1}{x^7})$ is:
Question : If $x^2+\frac{1}{x^2}=2$, then the value of $x-\frac{1}{x}$ is:
Question : If $x+5+\frac{1}{x+1}=6$, then the value of $(x+1)^{3}+\frac{1}{(x+1)^{3}}$ is:
Question : If $x+\frac{1}{x}=-2$, then what is the value of $x^{17}+x^{-17}+x^{12}+x^{-12} ?(x<0)$
Question : If $x+\frac{1}{x}=2$, then the value of $x^{57}+\frac{1}{x^{57}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile