Question : If $\small x=a\left (b-c \right),\; y=b\left (c-a \right) ,\; z=c\left (a-b \right)$, then the value of $\left (\frac{x}{a} \right)^{3}+\left (\frac{y}{b} \right)^{3}+\left (\frac{z}{c} \right)^{3}$ is:
Option 1: $\frac{2xyz}{abc}$
Option 2: $\frac{xyz}{abc}$
Option 3: $0$
Option 4: $\frac{3xyz}{abc}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{3xyz}{abc}$
Solution : Given: $x=a\left (b-c \right),\; y=b\left (c-a \right) ,\; z=c\left (a-b \right)$ $\left (\frac{x}{a} \right )^{3}+\left (\frac{y}{b} \right )^{3}+\left (\frac{z}{c} \right)^{3}$ = $ (b-c)^3+(c-a)^3+(a-b)^3$ Since $\left (\frac{x}{a} \right )+\left (\frac{y}{b} \right )+\left (\frac{z}{c} \right)$ = $ (b-c)+(c-a)+(a-b)=0$ Use identity: $x^3+y^3+z^3=3xyz$ if $x+y+z=0$ So, $\left (\frac{x}{a} \right )^{3}+\left (\frac{y}{b} \right )^{3}+\left (\frac{z}{c} \right)^{3}$ = $3 \left (\frac{x}{a} \right )(\frac{y}{b})(\frac{z}{c})=\frac{3xyz}{abc}$ Hence, the correct answer is $\frac{3xyz}{abc}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x$ = $y$ = $z$, then $\frac{\left (x+y+z \right )^{2}}{x^{2}+y^{2}+z^{2}}$ is equal to:
Question : If $x: y: z=3: 4: 5$, then what will be the ratio of $\left(\frac{x}{y}\right):\left(\frac{y}{z}\right):\left(\frac{z}{x}\right)$?
Question : If $\small x+y+z=6$ and $xy+yz+zx=10$, then the value of $x^{3}+y^{3}+z^{3}-3xyz$ is:
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Question : If $6^{x}=3^{y}=2^{z}$, then what is the value of $\frac{1}{y}+\frac{1}{z}-\frac{1}{x}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile