Question : If $\sin 2\theta=\frac{\sqrt{3}}{2}$, then the value of $\sin 3\theta$ is equal to $(0^{\circ}\leq \theta\leq 90^{\circ})$:
Option 1: $\frac{1}{2}$
Option 2: $1$
Option 3: $0$
Option 4: $\frac{\sqrt{3}}{2}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1$
Solution : $\sin 2\theta=\frac{\sqrt{3}}{2}=\sin 60^{\circ}$ $⇒2\theta = 60^{\circ}$ $⇒\theta = 30^{\circ}$ We know that, $\sin 3\theta = \sin 90^{\circ} = 1$ Hence, the correct answer is $1$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin (\theta +18^{\circ})=\cos 60^{\circ}(0< \theta < 90^{\circ})$, then the value of $\cos 5\theta$ is:
Question : If $4 \sin ^2 \mathrm{A}-3=0$ and $0 \leq \mathrm{A} \leq 90^{\circ}$, then $3 \sin \mathrm{A}-4 \sin ^3 \mathrm{A}$ is:
Question : If $4\sin^{2}\theta-1=0$ and angle $\theta$ is less then $90^{\circ}$, the value of $\cos^{2}\theta+\tan^{2}\theta$ is: (Take $0^{\circ}< \theta< 90^{\circ}$)
Question : If $\theta$ is a positive acute angle and $4\cos ^{2}\theta -4\cos \theta +1=0$, then the value of $\tan (\theta -15^{\circ})$is equal to:
Question : If $(\sin \theta-\cos \theta)=0$, then the value of $\sin\;(\pi-\theta)+\sin \left(\frac{\pi}{2}-\theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile