Question : If $\cos \theta=\frac{5}{13}$, then the value of $\tan ^2 \theta+\sec ^2 \theta$ is equal to:
Option 1: $\frac{303}{25}$
Option 2: $\frac{313}{25}$
Option 3: $\frac{233}{25}$
Option 4: $\frac{323}{25}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{313}{25}$
Solution : Given: The value of $\cos \theta=\frac{5}{13}$. Use the trigonometric identity, $\sin^2 \theta +cos^2 \theta=1$. $\tan ^2 \theta+\sec ^2 \theta=\frac{\sin^2 \theta}{\cos^2 \theta}+\frac{1}{\cos^2 \theta}$ = $\frac{\sin^2 \theta+1}{\cos^2 \theta}$ = $\frac{1–cos^2 \theta+1}{\cos^2 \theta}$ = $\frac{2–cos^2 \theta}{\cos^2 \theta}$ = $\frac{2–(\frac{5}{13})^2}{(\frac{5}{13})^2}$ = $\frac{2–\frac{25}{169}}{\frac{25}{169}}$ = $\frac{(338–25)\times 169}{169\times 25}$ = $\frac{313}{25}$ Hence, the correct answer is $\frac{313}{25}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sec\theta+\tan\theta=5$, then find the value of $\tan\theta$.
Question : If $\sec^2 \theta+\tan^2 \theta=\frac{25}{18}$, the value of $\sec^4 \theta-\tan^4 \theta$ is:
Question : Which of the following is equal to $[\frac{\tan \theta+\sec \theta–1}{\tan \theta–\sec \theta+1}]$?
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile