Question : If $\cos\theta = \frac{x^2\:-\:y^2}{x^2\:+\:y^2}$, then the value of $\cot\theta$ is equal to:
Option 1: $\frac{2xy}{x^{2}\:-\:y^{2}}$
Option 2:
$\frac{2xy}{x^2\:+\:y^2}$
Option 3:
$\frac{x^{2}\:+\:y^{2}}{2xy}$
Option 4:
$\frac{x^{2}\:-\:y^{2}}{2xy}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer:
Solution : Let right angle triangle at B and $\angle C = \theta$. $\cos \theta = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{CB}{AC} = \frac{x^{2}\:-\:y^{2}}{x^{2}\:+\:y^{2}}$ Applying Pythagoras' theorem, $(x^{2}+y^{2})^{2} =(x^{2}-y^{2})^{2}+(\text{Height})^{2}$ $⇒x^{4}+y^{4}+2x^{2}y^{2} =x^{2}+y^{2}-2x^{2}y^{2} +(\text{Height})^{2}$ $⇒4x^{2}y^{2} = (\text{Height})^{2}$ $⇒\sqrt{4x^{2}y^{2}} = \text{Height}$ $⇒2xy = \text{Height}$ So, $\cot\theta = \frac{\text{Base}}{\text{Height}} = \frac{x^{2}\:-\:y^{2}}{2xy}$ Hence, the correct answer is $\frac{x^{2}\:–\:y^{2}}{2xy}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\cos 21^{\circ}=\frac{x}{y}$, then $(\operatorname{cosec21^{\circ}}-\cos 69^{\circ})$ is equal to:
Question : If $x\sin^{3}\theta +y\cos^{3}\theta=\sin\theta\cos\theta$ and $x\sin\theta-y\cos\theta=0$, then the value of $\left ( x^{2}+y^{2} \right )$ equals:
Question : If $x+\frac{1}{x}=2 \cos \theta$, then $x^3+\frac{1}{x^3}=?$
Question : If $x=a(\sin\theta+\cos\theta), y=b(\sin\theta-\cos\theta)$, then the value of $\frac{x^2}{a^2}+\frac{y^2}{b^2}$ is:
Question : If $x=8(\sin \theta+\cos \theta)$ and $y=9(\sin \theta-\cos \theta)$, then the value of $\frac{x^2}{8^2}+\frac{y^2}{9^2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile