11 Views
Question : If $pq(p+q)=1$, then the value of $\frac{1}{p^{3}q^{3}}-p^{3}-q^{3}$ is equal to:
Option 1: 1
Option 2: 2
Option 3: 3
Option 4: 4
Answer (1)
Correct Answer: 3
Solution :
Given: $pq(p+q)=1$
⇒ $(p+q)=\frac{1}{pq}$
Cubing both sides,
⇒ $p^3+q^3+3pq(p+q)=\frac{1}{p^3q^3}$
Thus,
$\frac{1}{p^3q^3}–p^3–q^3= 3pq(p+q)$
Putting the value of $(p+q)=\frac{1}{pq}$
$= \frac{3}{pq}(pq)$
$=3$
$\therefore\frac{1}{p^3q^3}–p^3–q^3=3$
Hence, the correct answer is 3.
SSC CGL Complete Guide
Candidates can download this ebook to know all about SSC CGL.
Download EBookKnow More About
Related Questions
TOEFL ® Registrations 2025
Apply
Accepted by 13,000 universities worldwide | Offered in 200+ countries | 40 million people have taken TOEFL Test
Upcoming Exams
Mains Exam
Result Date:
1 Apr, 2025
- 30 Apr, 2025
Result Date:
1 Apr, 2025
- 30 Apr, 2025
Mains
Admit Card Date:
17 Apr, 2025
- 5 May, 2025