Question : If $c+ \frac{1}{c} =\sqrt{3}$, then the value of $c^{3}+ \frac{1}{c^{3}}$ is equal to:
Option 1: 0
Option 2: $\sqrt[3]{3}$
Option 3: $\frac{1}{\sqrt{3}}$
Option 4: $\sqrt[6]{3}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : Given: $c+ \frac{1}{c} =\sqrt{3}$ $⇒(c+ \frac{1}{c})^{3} =(\sqrt{3})^{3}$ $⇒c^{3}+ \frac{1}{c^{3}}+3×c×\frac{1}{c}(c+ \frac{1}{c}) =3\sqrt{3}$ $⇒c^{3}+ \frac{1}{c^{3}}+3×\sqrt{3}=3\sqrt{3}$ $⇒c^{3}+ \frac{1}{c^{3}}=3\sqrt{3} -3\sqrt{3}$ $\therefore c^{3}+ \frac{1}{c^{3}}=0$ Hence, the correct answer is 0.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sqrt{1+\frac{\sqrt{3}}{2}}-\sqrt{1-\frac{\sqrt{3}}{2}}=c$, then the value of $\mathrm{c}$ is:
Question : If $x+\frac{1}{x}=\sqrt{3}$, then the value of $x^{3}+\frac{1}{x^{3}}$ is equal to:
Question : If $x=\sqrt{–\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$ where $x > 0$, then the value of $x$ is equal to:
Question : $\frac{1}{\sqrt a}-\frac{1}{\sqrt b}=0$, then the value of $\frac{1}{a}+\frac{1}{ b}$ is:
Question : If $x+\frac{1}{x}=2$, then the value of $x^{2}+\frac{1}{x^{6}}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile