Question : If $a^{3}+\frac{1}{a^{3}}=2$, then the value of $\frac{a^{2}+1}{a}$ is ($a$ is a positive number):
Option 1: 1
Option 2: 2
Option 3: 3
Option 4: 4
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : Given: $a^{3}+\frac{1}{a^{3}}=2$ ⇒ $a^{3}+\frac{1}{a^{3}}=2$ ⇒ $a^{6}+1 =2a^3$ ⇒ $a^{6}-2a^3+1=0$ ⇒ $(a^3-1)^2=0$ $a = 1$, the above equation is satisfied. Now putting $a = 1$, in the equation, we get $\frac{a^{2}+1}{a} = \frac{1^{2}+1}{1} = 2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\theta$ is a positive acute angle and $\tan2\theta \tan3\theta=1$, then the value of $2(\cos^2\frac{5\theta}{2}-1)$ is:
Question : If $(2+\sqrt{3})a=(2-\sqrt{3})b=1$, then the value of $\frac{1}{a}+\frac{1}{b}$ is:
Question : If $\frac{1}{a}(a^2+1)=3$, then the value of $\frac{a^6+1}{a^3}$ is:
Question : If $a+\frac{1}{a-2}=4$, then the value of $(a-2)^{2}+(\frac{1}{a-2})^{2}$ is:
Question : If $\tan\theta-\cot\theta=0$ and $\theta$ is positive acute angle, then the value of $\frac{\tan(\theta+15)}{\tan(\theta-15)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile