Question : If $x+\frac{1}{x}=1$, then the value of $\frac{x^2+7x+1}{x^2+11x+1}$:
Option 1: $\frac{3}{4}$
Option 2: $\frac{2}{3}$
Option 3: $\frac{1}{3}$
Option 4: $\frac{1}{4}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{2}{3}$
Solution : Given: $x+\frac{1}{x}=1$ Dividing numerator and denominator of $\frac{x^2+7x+1}{x^2+11x+1}$ by $x$. So, $\frac{x^2+7x+1}{x^2+11x+1}$ = $\frac{x+7+\frac{1}{x}}{x+11+\frac{1}{x}}$ = $\frac{1+7}{1+11}$ = $\frac{8}{12}$ = $\frac{2}{3}$ Hence, the correct answer is $\frac{2}{3}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=2+\sqrt3$, then the value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is:
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Question : If $(x+\frac{1}{x})$ = 5, then the value of $\frac{5x}{x^{2}+5x+1}$ is:
Question : If $x^{3}+\frac{1}{x^{3}}=110$, then find the value of $x+\frac{1}{x}$:
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile