Question : If $x^2+\frac{1}{x^2}=7$, then the value of $x^3+\frac{1}{x^3}$ where x > 0 is equal to:
Option 1: 18
Option 2: 12
Option 3: 15
Option 4: 16
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 18
Solution : If $x^2+\frac{1}{x^2}=7$, then the value of $x^3+\frac{1}{x^3}$ where x > 0 is equal to: $(x+\frac{1}{x})^2 = x^2+2+ (\frac{1}{x})^2$ ⇒ $(x+\frac{1}{x})^2 = 2+7$ ⇒ $(x+\frac{1}{x})^2 = 9$ ⇒ $(x+\frac{1}{x}) = 3$ ⇒ $(x+\frac{1}{x})^3 = 3^3$ ⇒ $x^3 + (\frac{1}{x})^3+3x\frac{1}{x}(x+\frac{1}{x}) = 27$ ⇒ $x^3 + (\frac{1}{x})^3+3(3) = 27$ ⇒ $x^3 + (\frac{1}{x})^3 = 27-9$ ⇒ $x^3 + (\frac{1}{x})^3 = 18$ Hence, the correct answer is 18.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x^2+y^2=29$ and $xy=10$, where $x>0,y>0$ and $x>y$. Then the value of $\frac{x+y}{x-y}$ is:
Question : If $(x+\frac{1}{x})\neq 0$ and $(x^3+\frac{1}{x^3})= 0$, then the value $(x+\frac{1}{x})^4$ is:
Question : If $x=\sqrt{–\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$ where $x > 0$, then the value of $x$ is equal to:
Question : If $x=\frac{1}{x-3},(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile